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Abstract
A simple Kronig–Penney model for 1D mesoscopic systems with δ peak
potentials is used to study numerically the effect of non-linear interaction on
the resonant states of the random dimer model. It is shown that the nonlinear
interaction increases or decreases the width of the resonances depending on
both its sign and strength. The resonance width �E is a power law decaying
with the system size as L−γ . The exponent γ decreases linearly with the
nonlinear interaction strength when the dimer impurity concentration increases.
The resonance energy states, in these systems, are shifted depending on the kind
of interaction. Further investigations are provided on the effect of nonlinearity
on conductance fluctuations near the resonances.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is well established that almost all eigenstates of one-dimensional disordered systems are
localized for any amount of disorder [1]. The electronic transmission coefficient was shown
to have an exponential decay [2, 3] leading to the absence of transport in an infinite system.
However, recently some models of disorder introducing correlation [4, 5] and nonlinearity [6, 7]
have been found to exhibit a number of extended states at particular energies. These discrete
extended states have been observed recently in the experiment with GaAs–AlxGa1−xAs random
superlattices [8] and in nonlinear disordered media [9].

Several one-dimensional models with correlated disorder have been proposed which
exhibit delocalized states. The typical one is the random dimer model (RDM) introduced
by Dunlap et al [10]. In the RDM, where the impurities are randomly embedded in nearest-
neighbour pairs in an originally pure host chain,

√
N extended electronic states were found of

length N [10, 11]. A discrete number of extended eigenstates was found numerically [12, 13]
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in RDM and experimentally examined using transmission measurements on semiconductor
superlattices [8]. These results have been confirmed by microwave transmission spectra of
single-mode waveguides with inserted correlated scatterers [14]. Delocalization has also
been reported to occur in disordered chains with correlated off-diagonal interactions [15, 16].
Short-range correlation was found to be responsible for a metal–insulator transition in one-
dimensional lattices [17]. In these 1D systems, the metallic phase is well characterized by a
Gaussian conductance distribution. Furthermore, the existence of a mobility edge separating
extended and localized states was confirmed for 1D random systems with weak long-range
correlated disorder [18–20]. The bandwidth of extended states was found to behave as
1/

√
L (L being the system size) [21]. This means that this phase has a zero measure in the

thermodynamic limit.
On the other hand, nonlinear interactions are often present in a real system. The nonlinear

Schrödinger equation has been studied extensively in recent years and served as a prototype
for studying nonlinear phenomena. The origin of the nonlinearity in the Schrödinger equation
corresponds to different physical phenomena. In electronic systems, it would correspond to
Coulomb interaction while in a superfluid it corresponds to Gross–Pitaevsky equation. In
a previous paper [22], we found that the nonlinearity can either localize or delocalize the
electronic states depending on the strength and the sign of the nonlinear potential. Physically,
a repulsive nonlinear (NL) potential represents the electron–electron interaction, while an
attractive one corresponds to the electron–phonon interaction. These interactions are important
in various systems such as quantum dots, superlattices, etc [23]. It is also found that the
nonlinearity can suppress the Wannier–Stark effect caused by the electric field in the case of
ordered potentials and can give rise to a transition from superlocalized to weakly localized
states in disordered systems [24].

The aim of this paper is to investigate the effect of nonlinear interactions in a system
with correlated disorder and particularly their effects on resonant transmission induced by
correlation. It is also important to study the effect of nonlinear interaction on resonance band
width, which is important for conduction. Interplay between the delocalization effect induced
by the correlated disorder and the localization (delocalization) effect caused by the non-linear
interaction is our interest.

2. Model description

The model considered here is of an electron with energy E moving along a one-dimensional
periodic lattice of N δ-peak potentials plus nonlinear interaction of strength α on each site. The
corresponding Schrödinger equation is [25][

− d2

dx2
+

N∑
n=1

(βn + α|�(x)|2)δ(x − na)

]
�(x) = E�(x) (1)

where �(x) is the single-particle wavefunction at site x . The nth site potential strength βn

takes either the value βcr or βdm corresponding to the crystal host and the dimer respectively.
The potential βdm is randomly distributed along the chain and appears in pairs. The nonlinear
interaction is of δ-function type and with constant strength α. This means that the electron
propagates freely between lattice sites and interacts only at x = n. The electron energy E is
expressed here in units of h̄2/2m. All the nonlinear physics is contained in the coefficient α.
The positive α corresponds to repulsive (electron–electron) interaction while negative α models
attractive (electron–phonon or ion) interactions. The lattice parameter is taken for commodity
to be unity (L = N). The two ends of the chain are assumed to be connected to perfect leads
where the wavefunctions are plane waves. The wavefunctions between lattice sites are of the
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form �n = Aneikx + Bne−ikx where the momentum is given by k = √
E . The differential

equation (1) can be mapped by the Poincaré map representation into the following recursive
equation [25]:

�n+1 + �n−1 =
[

2 cos
√

E + sin
√

E√
E

(βn + α|�n|2)
]

�n . (2)

The solution of equation (2) is carried out iteratively by taking the two initial
wavefunctions at sites 1 and 2: �1 = e−ik and �2 = e−2ik .

The transmission problem considers an incident wave at x = L with �(x) = r0e−ik(x−L) +
r1eik(x−L) for x � L and a transmitted wave �(x) = t−ikx for x � 0. In order to have a
uniquely defined problem the output is fixed |t2| = 1 and then the corresponding input r0 is
calculated. The coefficient r0 is given by

r0 = t
(�N − e−i

√
E�N+1)

(e2i
√

E − 1)
. (3)

The transmission coefficient (T = |t/r0|2) reads [26]

T = |e2i
√

E − 1|2∣∣∣�N+2 − e−i
√

E�N+3

∣∣∣2
. (4)

Thus the transmission coefficient depends only on the values of the wavefunction at the end
sites, �N+2 and �N+3, which are evaluated from the iterative equation (2). In order to study
the nature of the electronic states around the resonance of the dimer, we use the dimensionless
conductance g which is related to the transmission coefficient via the Landauer formula for 1D
systems [27]:

g = 2T

1 − T
(5)

where the factor of two arises from the two possible states of the electron spin and the variance
of the logarithm of the conductance (Ln(g)) reads

var(Ln(g)) = 〈Ln(g)2〉 − 〈Ln(g)〉2 (6)

where 〈· · ·〉 denotes an average over different realizations of the random potential.

3. Results and discussion

We choose for convenience in the rest of the paper βcr = 1 and βdm = 1.5. The chain length
is 5000 and we take dimer concentration c = 2%. We define the concentration c as the ratio
between the number of single scatterers with potential strength βdm and the total number of
scatterers of the system. The transmission coefficient is averaged over 1000 samples. The
nonlinear interaction is present in the dimer impurities. We first examine the NL interaction
effect on the resonance width of dimer within the first allowed band of the host. In a second
step, we study the conductance and its fluctuations around and away from the resonance energy
to explain the transition induced by nonlinearity.

Let us examine how the resonance width is affected by the NL interaction. The
transmission coefficient of the random dimer model is plotted, in figure 1, for three values
of NL strength α. For negative nonlinear interaction α, it is seen that the energy resonance
is slightly shifted to the lower energies while it width increases in comparison with the linear
case (α = 0, dotted curve). For positive α, the resonances get displaced to higher energies and
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Figure 1. Transmission coefficient versus the energy averaged over 1000 realizations of the same
system for different NL strengths for α = 0, α = +0.2 and α = −0.2.

become sharper. The energy resonant shift is due to the variation of the effective potential of
the dimer. From figure 1 we can measure the resonance width for different values of nonlinear
interaction strength. The behaviour of the band width is clearly shown in figure 2, where the
width of the resonance �E is plotted as a function of the nonlinear interaction both for positive
and negative α.

It is shown from this figure that a positive non-linearity decreases the width of the
resonance, indicating a localization phenomenon. Therefore, for negative nonlinearity, the
width starts to increase for |α| < |βdm − βcr| which is a signature of delocalization of the
electron eigenstates. The resonance width becomes maximum for |α| = |βdm−βcr| and beyond
this critical value the behaviour is then reversed, that is the resonance width decreases with |α|.
For the critical value |α|c = |βdm − βcr| the system seems to be transparent and the electron
moves freely.

The delocalization (the increase of the resonance width) can be explained by the fact that
when the nonlinear interaction strength |α| (α < 0) is increased the effective potential of the
dimer component in equation (1) given by

β∗
dm = βdm + α|�n|2 (7)

tends to approach the crystal component potential βcr. For the critical value |α|c = |βdm −βcr|,
the effective potential in equation (7) β∗

dm ≈ βcr and the system becomes periodic.
It was shown in the random dimer model and in the linear case (α = 0) that the width of the

resonance behaves with the system size as 1/
√

L [21]. This means that in the thermodynamic
limit the resonance width vanishes. To understand the behaviour of the band width with the
nonlinear interaction, we plotted the resonance width as a function of the system size (log–log
scale) for different values of α < 0. All the curves show a power-law decrease of �E with
the system size. The inset in figure 2 is an example for α = −0.4. The curve is compared
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Figure 2. The resonance width as a function of the nonlinear interaction |α|. The solid lines are a
guide for the eye. Inset: the resonance width versus the system size (log–log scale) for α = −0.4;
the slope of the fitted line is −0.30.
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Figure 3. Power-law exponent γ as a function of nonlinear interaction |α|(α < 0) for dimer
concentration c = 0.2 (diamond), c = 0.5 (squares) and c = 0.7 (triangles). The straight lines are
the result of numerical fitting.

with a linear fit of a slope equal to −0.3. This means that �E behaves as L−0.3. In figure 3 is
plotted the power-law exponent γ (�E = L−γ ) as a function of NL strength |α| (α < 0) for
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Figure 4. Mean of the logarithm of conductance 〈Ln(g)〉 versus the system size at resonant energy
Er for different NL strengths α > 0.

three values of dimer concentration c = 0.2, 0.5 and 0.7. For small concentration (c = 0.2),
it is clearly seen that the power-law exponent γ is invariant as in the linear case (α = 0). The
behaviour is preserved for any amount of NL interaction, that is �E = 1/

√
L . When the

concentration is increased, γ seems to decrease linearly following the equation

γ = A|α| + B (8)

where A = −0.48 (−0.6) and B = 0.48 (0.44) for c = 0.5 (0.7).
It is also shown, from figure 3, that even in the linear case (α = 0) γ depends slightly on

the dimer concentration c.
To investigate the nature of the electronic states at and around the resonance, we have

studied the scaling of the conductance at resonant energy. Figure 4 shows the mean of the
logarithm of conductance 〈Ln(g)〉 as a function of system size for different values of α > 0.
Each curve is built by averaging over 1000 realizations of the disorder. For α = 0, the
conductance is essentially constant up to system size N = 5000, indicating the extended nature
of the eigenstates. When increasing α, the conductance drops exponentially towards zero as the
system size increases, indicating a clear-cut transition. This behaviour confirms that a positive
NL interaction localizes the electronic eigenstates.

In figure 5, we show the variance of Ln(g) as a function of the electron energy for different
values of the NL interaction α. Notice the strong decrease of the fluctuations close to the
resonant energy Er (figure 5(a)). Away from the energy resonance E < Er, these fluctuations
increase with the strength of the NL interaction |α| (α > 0), indicating the strong localization
of the eigenstates. We can also observe from this figure that the conductance fluctuations are
smaller at the right side of the resonance (E > Er) in comparison to those at the left side
(E < Er). The correlations induce an increase of the conductance in certain energy ranges so
that for a finite system the fluctuations of this quantity around its mean value become small.
The delocalization transition is different on each side of the resonance.
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Figure 5. Variance of Ln(g) versus the energy for different NL strengths for L = 1000 and (a)
repulsive NL potentials, (b) attractive NL potentials.

For a negative NL interaction, the magnitude of the conductance fluctuations becomes
smaller on increasing the NL intensity |α| (figure 5(b)), which is an indication of delocalization
of the electron eigenstates.

In summary, the non-linear interaction seems to delocalize the electronic states when it is
attractive (α < 0) and provided that |α| < |βdm − βcr|. For the other cases (|α| > |βdm − βcr|)
or for a repulsive nonlinear interaction (α > 0), it seems to localize the electronic states.
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4. Conclusion

We investigated in this paper the effect of non-linearity on the resonant states of the random
dimer model using a simple Kronig–Penney Hamiltonian. We found that the nonlinear
interaction increases or decreases the width of the resonance depending on both its sign and
strength. We also found that the resonance width �E is a power-law decaying with the
system size as L−γ . The exponent γ depends on the concentration of the dimer impurities.
It decreases linearly with the nonlinear interaction strength when the concentration increases.
This means that the conduction is enhanced when the NL interaction increases provided that
|α| < |βdm − βcr|. At energy resonance, we found that increasing repulsive interaction
leads to localization while an attractive one reduces the conductance fluctuations near the
resonance energy, indicating a delocalization transition. It is important to study the whole
conductance distribution near the resonance to know more on this transition. The difference in
the behaviour of the conductance fluctuations, on both sides of the resonant energy, suggests
more investigations using the Lyapunov exponent statistics. This will be a subject for a
forthcoming paper.
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